Decoding kinetic parameters of grasping movements from single unit activity in monkey motor cortex

Development of neuronal prosthetics, where neuronal activity is used to control artificial limbs, has so far relied on decoding kinematic parameters of movements, such as movement position or velocity. In addition to kinematic control, proper control of forces exerted by the prosthetic device is necessary for successful interaction with the environment. In our study, we analysed the possibility of classifying and decoding different grasp related forces during active grasping. Two macaque monkeys were trained to reach, grasp and pull an object in response to visual cues. Cues instructed the monkeys to grasp the object with one out of two grip types (precision or side grip) and pull the object with one of two different forces (0.5N or 2N). Monkeys obtained a food reward after successfully performing the instructed grip and pull. During the task execution, we recorded electrophysiological signals from the multielectrode arrays implanted intracortically in the hand and arm area of the monkey’s motor cortex. Six different parameters of the grip: four pressure forces on each side of the object, pull force on the object and the object displacement, were recorded simultaneously with the neuronal activity. Recorded neuronal activity was used to classify different grip types or loading forces, and to decode the continuous traces of different forces during the grip. Our results show that kinetic grip parameters can be decoded with high accuracy, thereby improving the feasibility of constructing fully functional anthropomorphic neuronal prosthesis that relies on kinetic (force) control.

Listed In: Biomechanical Engineering, Neuroscience

Bilateral assessment of cartilage with UTE-T2* quantitative MRI and associations with knee center of rotation following anterior cruciate ligament reconstruction

Purpose: Anterior cruciate ligament (ACL) tear greatly increases the risk of knee osteoarthritis (OA), even when patients undergo ACL reconstruction surgery (ACLR). Changes to walking kinematics following ACLR have been suggested to play a role in this degenerative path to post-traumatic OA by shifting the location of repetitive joint contact loads that occur during walking to regions of cartilage not conditioned for altered loads. Recent work has shown that changes to the average knee center of rotation during walking (KCOR) between 2 and 4 years after ACLR are associated with long term changes in patient reported outcomes at 8 years. Changes to KCOR result in changes to contact patterns between the femur and the tibial plateau. However, it is unknown if changes to this kinematic measure are reflected by changes to cartilage as early as 2 years after surgery. Ultrashort TE-enhanced T2* (UTE-T2*) mapping has been shown to be sensitive to subsurface changes occurring in deep articular cartilage early after ACL injury and over 2 years after ACLR that were not detectable by standard morphological MRI. Thus, the purpose of this study was to test the hypothesis that side to side differences in KCOR correlate with side to side differences in UTE-T2* quantitative MRI (qMRI) in the central weight bearing regions of the medial and lateral tibial plateaus at 2 years following ACLR. Methods: Thirty-five human participants (18F, Age: 33.8±10.5 yrs, BMI: 24.1±3.3) with a history of unilateral ACL reconstruction (2.19±0.22 yrs post-surgery) and no other history of serious lower limb injury received bilateral examinations on a 3T MRI scanner. UTE-T2* maps were calculated via mono-exponential fitting on a series of T2*-weighted MR images acquired at eight TEs (32μs -16 ms, non-uniform echo spacing) using a radial out 3D cones acquisition. All subjects completed bilateral gait analysis. Medial-lateral (ML) and anterior-posterior (AP) coordinates of average KCOR during stance of walking were calculated for both knees. Side to side differences in KCOR were tested for correlations with side to side differences in mean full thickness UTE-T2* quantitative values in the central weight bearing regions of the medial and lateral tibial plateau using Pearson correlation coefficients. Results: There was a distribution in UTE-T2* values, with some subjects having higher UTE-T2* and some lower in the ACLR knee relative to the contralateral knee. A significant correlation (R=0.407, p=0.015, Figure 1A) was observed between UTE-T2* and the ML KCOR with a more lateral KCOR corresponding to higher values of UTE-T2* for the medial tibia. Similarly, for the lateral tibia, a lower UTE-T2* was correlated with a more posterior KCOR (R=0.363, p=0.032, Figure 1B). Significant correlations were not observed for UTE-T2* in the lateral tibia with the ML position of KCOR or for UTE-T2* in the medial tibia with the AP position of KCOR. Conclusions: The results of this study support the hypothesis that side to side differences in mean full thickness UTE-T2* qMRI correlate with side to side differences in knee kinematics at 2 years after ACLR. The finding that a more lateral KCOR in the ACLR knee correlates with UTE T2* values in the medial tibia that were higher than the contralateral side suggests that this kinematic change, which has been previously shown to result in more relative motion between the femur and tibia in the medial compartment, could be affecting subsurface matrix integrity, inducing changes detectable by UTE-T2* mapping. Additionally, the finding that a more posterior KCOR in the ACLR knee correlated with UTE-T2* values in the lateral tibia that were lower than the contralateral knee further suggests that the UTE-T2* metric may reflect early changes in cartilage health. When interpreted within the context of prior work showing that a posterior shift in KCOR from 2 to 4 years post-surgery correlated with improved clinical outcomes at 8 years, the observed lower UTE-T2* with a more posterior KCOR, which is reflective of improved quadriceps recruitment, suggests positive cartilage matrix properties. In spite of the limitations of this cross-sectional and exploratory study, and the difficulty accounting for changes in the contralateral knee, these results support future studies of the relationship between UTE-T2* and KCOR to provide new insight into predicting the risk for OA after ACLR.
Listed In: Biomechanical Engineering, Biomechanics, Gait, Mechanical Engineering, Orthopedic Research, Sports Science

Effects of Total Knee Replacement Material Pairing on Implant Kinematics and Stability

Physical testing of TKR systems to assess stability is an important aspect in screening candidate TKR designs which can be expensive and time consuming. Costs can be reduced by utilizing 3D printed plastic components. The objective is to compare the kinematics and intrinsic constraint of metal-on-plastic (M-P) and plastic-on-plastic (P-P) implants under physiologically relevant loading, with and without simulated ligament contributions, in order to elucidate the effects of material pairings. A cruciate retaining TKR implant was created by combining a 3D printed ABS plastic tibial component with the standard cobalt chrome femoral component, as well as a 3D printed ABS plastic replica femoral component. This results in both M-P and P-P articulations that were mounted to a VIVO 6-DOF joint motion simulator (AMTI, Watertown, MA), which was used for in vitro constraint testing using functional laxity tests. Anterior-posterior (AP) and internal-external (IE) constraint was measured based on resulting deviations from the normal path when superimposed AP and IE loads were applied. Ligaments were simulated as tension-only point-to-point springs using the soft tissue modelling capabilities of the VIVO. Different kinematics were observed between the M-P and P-P implants which could be the result of different initial implant positioning on the joint motion simulator or due to “stiction” of the P-P implant. The functional laxity of the implant system tested appears to be relatively insensitive to the material pairing and ligament presence. These relationships are complex and hard to predict, which underscores the importance of pre-clinical in vitro testing.
Listed In: Biomechanical Engineering, Biomechanics, Gait, Mechanical Engineering, Orthopedic Research

Elasto-Plastic Computational Modelling of Damage Mechanisms in Total Elbow Replacements

As a treatment for end-stage elbow joint arthritis, total elbow replacement (TER) results in joint motions similar to the intact joint; however, bearing wear, excessive deformations and/or early fracture may necessitate early revision of failed implant components. A finite element model of a TER assembly was developed based on measurements from a Coonrad-Morrey implant (Zimmer, Inc., Warsaw, IN) using nonlinear elasto-plastic UHMWPE material properties and a frictional penalty contact formulation. The loading scenario applied to the model includes a flexion-extension motion, a joint force reaction with variable magnitude and direction and a time varying varus-valgus (VV) moment with a maximum magnitude of 13 N.m, simulating a chair-rise scenario as an extreme loading condition. Model results were compared directly with corresponding experimental data. Experimental wear tests were performed on the abovementioned implants using a VIVO (AMTI, Watertown, MA) six degree-of-freedom (6-DOF) joint motion simulator apparatus. The worn TER bushings were scanned after the test using micro computed tomography (μCT) imaging techniques, and reconstructed as 3D models. Contact pressure distributions on the humeral and ulnar bushings correlate with the sites of damage as represented by the μCT data and gross observation of clinical retrievals. The results demonstrate UHMWPE bushing damage due to different loading protocols. Numerical results demonstrate strong agreement with experimental data based on the location of deformation and creep on bushings and exhibit promising capabilities for predicting the damage and failure mechanisms of TER implants.
Listed In: Biomechanical Engineering, Biomechanics, Biotribology, Mechanical Engineering, Orthopedic Research

The effects of constraining OpenSim inverse kinematics to a bone pin marker defined range

Since OpenSim uses motion capture data as input while solving inverse kinematic (IK), it is subjected to soft tissue artifact (STA) as the commonly used surface markers do not correctly represent the underlying rigid bones. The purpose of this study was to determine the effect of applying bone pin (BP) marker defined ranges of knee motion in OpenSim IK solutions. Participants completed successful jump lunges where they were asked to stand on their non-test limb and jump forward onto a force plate (AMTI OR 6-7-OP), land on their test limb and maintain balance for two seconds. Data were processed through OpenSim with generic knee joint constraints as well as constraints derived from BP kinematic data. BP constrained results yielded a significantly more flexed, adducted and externally rotated knee. Significant differences were also observed for anterior/ posterior and distraction/ compression translations throughout the entire jump lunge while medial/lateral translations were only significant pre and 50 ms post contact. After contact, BP constraints produced a significantly greater flexor, abductor, and external rotator moment. With respect to translation forces, the BP solutions produced smaller posterior shear and greater medial shear and compressive forces at the knee joint. Generic models available in the OpenSim repository contain knee joint ranges that are not physiologically realistic. Therefore, caution should be expressed when using the results from musculoskeletal modelling as STA and optimizations can introduce error in both the kinematics and kinetic solutions. This error is amplified during ballistic and high impact tasks such as jump landing.
Listed In: Biomechanical Engineering, Biomechanics


While the popularity of triathlon is increasing, the underlying biomechanics of the various bicycling positions and saddle types are not yet understood. PURPOSE: To determine how bicycle rider position and saddle type (road vs. triathlon) affect the bicycle-rider interface forces (BRIFs) at a standardized power and cadence. METHODS: A stationary cycling ergometer was modified to include force transducers at the saddle, bottom bracket, and stem. Anatomical measurements were made in order to fine-tune rider fit on the ergometer. 9 subjects completed riding trials in all combinations of road position, road saddle, triathlon position, and triathlon saddle. Riding trials were 6 minutes, at a standardized power output of 2 Watts per kilogram (W/kg) and 90 Revolutions per Minute (RPM). RESULTS: Analysis was broken into three categories: Road Saddle, Road Position (RR) vs. Triathlon Saddle, Road Position (TR), Road Saddle, Triathlon Position (RT) vs. Triathlon Saddle, Triathlon Position (TT), and Road Saddle, Road Position vs. Triathlon Saddle, Triathlon Position. Surprisingly, there were no significant differences in saddle vertical forces between either body positions or saddle type. However, there were significant differences at the handlebar; 8.4% more body weight supported at the handlebar in the triathlon position compared to the road position while using a triathlon saddle. CONCLUSION: Across cycling positions, there is a significant change in saddle and stem vertical forces. However, within a cycling position, saddle type does not change the amount of vertical force seen at the saddle.
Listed In: Biomechanical Engineering, Biomechanics, Sports Science

Modeling 3D Ground Reaction Forces During Walking Using Nanocomposite Piezo-Responsive Foam Sensors

This study presents a new technique for acquiring ground reaction forces from novel, nanocomposite piezo-responsive foam (NCPF) sensors. A shoe was fitted with four NCPF sensors located at the heel, arch, ball, and toe positions. Running data was collected simultaneously from both the shoe sensors and from a force-sensing treadmill. A portion (30 randomly selected stance phases) of the treadmill data was used to develop a predictive stochastic model of GRF based on the sensor inputs. The stochastic model was then used to predict GRF for the remaining shoe sensor data, which was then benchmarked against the treadmill data. The results indicated that this model was able to predict forces in the x-axis (anterior-posterior) with 2.38% error, forces in the y-axis (medial-lateral) with 6.01% error, and forces in the z-axis (vertical) with 2.43% error. These novel sensors hold potential to dramatically improve both the ease and expense associated with GRF data, as well as allow unprecedented ability to measure GRF during real world applications outside of the laboratory.
Listed In: Biomechanical Engineering, Gait, Mechanical Engineering, Sports Science

Nucleotomy Alters Internal Strain Distribution of the Human Lumbar Intervertebral Disc

Nucleotomy is a surgical procedure following herniation and also simulates the reduced nucleus pulpousus (NP) pressure that occurs with disc degeneration. Internal disc strains are an important factor in disc function, yet it is unclear how internal strains are affected by nucleotomy. Grade II L3-L4 human cadaveric discs (n=6) were analyzed intact and after a partial nucleotomy that removed 30-50% of the NP through a left posterolateral incision (incision) while the contralateral side remained intact (uninjured). Two cycles of stress-relaxation testing were performed for reference (50N) and loaded (0.70MPa) configurations. After each 8hour equilibration period, the reference and loaded discs were imaged separately in a 7T MRI scanner (0.3mm isotropic resolution). The reference and loaded images were registered to calculate internal strain within the annulus fibrosus (AF) lamellae and discs were averaged to create anatomical templates. Circumferential, radial, and axial strains for each disc were transformed to the average templates, effectively normalizing the strains. Five circumferential regions were defined within the mid-third of the templates. Nucleotomy altered disc strains on both the incision and uninjured sides from the intact state. Strain fields were inhomogeneous through the five regions. Mean circumferential strain was unaffected by nucleotomy on the uninjured side, but decreased with incision, showing hoop strains through the AF were disrupted. Mean compressive axial strains were higher after nucleotomy, effectively reducing AF stiffness, and mean radial strains were unaltered after partial nucleotomy. These findings are important to address etiology and progression of degeneration, and to develop and evaluate therapeutic interventions.
Listed In: Biomechanical Engineering, Biomechanics, Orthopedic Research

A preliminary study on quality of knee strength measurements by means of Hand Held Dynamometer and Optoelectronic System

Strength measurements are popular in the clinical practice to evaluate the health status of patients and quantify the outcome of training programs. Currently a common method to measure strength is based on Hand Held Dynamometers (HHD) which is operator-dependent. Some studies were conducted on repeatability of strength measurements but they were limited to the statistical analysis of repeated measurements of force. In this work, the authors developed a methodology to study the quality of knee flexion/extension strength measurements by measuring the effective HHD position and orientation with respect to the patient. HHD positioning attitude was measured by means of an Optoelectronic System for which a marker protocol was defined ad-hoc. The approach allowed to assess quality of measurements and operator’s ability by means of quantitative indices. The protocol permitted the evaluation of: angles of HHD application, angular range of motion of the knee and range of motion of the HHD. RMSE parameters allowed to quantify the inaccuracy associated to the selected indices. Results showed that the operator was not able to keep the subject’s limb completely still. The force exerted by the subject was higher in knee extension and the knee range of motion was higher than expected, however the operator had more difficulties in holding the HHD in knee flexion trials. This work showed that HHD positioning should be as accurate as possible, as it plays an important role for the strength evaluation. Moreover, the operator should be properly trained and should be strong enough to counteract the force of the subject.
Listed In: Biomechanical Engineering, Biomechanics, Physical Therapy, Sports Science

Human cadaveric bi-Segment impact experiments at different postures

Victims of improvised explosive devices (IEDs) that have presented spinal injury in recent conflicts have been shown to have a high incidence of lumbar spine fractures. Previous studies have shown that the initial positioning of spinal bone-disc-bone complexes affects their biomechanical response when loaded quasi-statically; such a correlation, however, has not been explored at appropriate high loading rate scenarios that simulate injury. This study aims to investigate the response of lumbar spine cadaveric segments in different postures under axial impact conditions. Three T11-L1 bi-segments were dissected and tested destructively in a drop tower under flexed/neutral/extended postures. Strains were measured on the vertebral body and the spinous process of T12. Forces were measured cranially using a 6-axis load cell, and a high-speed camera was used to capture displacements and fracture. The impacted specimens were CT-scanned to identify the fracture pattern. Whilst axial force to failure was similar for flexed and extended postures, the non-axial forces and the bending moments, however, were dissimilar between postures. Although all specimens showed a burst fracture pattern, the extended posture failed more posteriorly. This suggests that axial force alone is not adequate to predict injury severity in the lumbar spine. This insight would not have been possible without the use of the 6-axis load cell. As metrics for spinal injury in surrogates take into account only the axial force, this programme of work may provide data for a better injury criterion and allow for a mechanistic understanding of the effects of posture on injury risk.
Listed In: Biomechanical Engineering, Biomechanics, Mechanical Engineering, Orthopedic Research