Residual Force Enhancement in Context of Everyday Human Movement

When an active muscle is stretched, the resulting post-eccentric steady-state force is known to be greater than the isometric force at the corresponding muscle length. The aim of our research was to clarify if residual force enhancement (RFE) is relevant for voluntary human muscle action in everyday like scenarios. Therefore 13 healthy subjects participated in our study and had to perform bilateral leg extensions using a motor-driven leg press dynamometer, measuring external reaction forces (Fext) as well as activity of 9 lower extremity muscles. In addition, ankle (Ma) and knee (Mk) joint torque were calculated using inverse dynamics. Subjects performed isometric and isometric-eccentric-isometric contractions (20° stretch, ω=60°/s) at 30% of maximum voluntary activation. Visual feedback of VL muscle activation was given to control submaximal muscle action. We did not find differences in VL activation level between contraction conditions and time points. Mean VL activity ranged between 29.1 ± 2.2% and 29.8±2.5% MVA. We found significantly enhanced Fext (p < 0.002) as well as joint torques in knee (p < 0.002) and ankle joint (p < 0.033) for all instances in time. In summary RFE seems to be relevant in everyday like human motion.

Listed In: Biomechanics, Sports Science

Are static and dynamic squatting activities comparable?

Background: Numerous studies have described 3D kinematics, 3D kinetics and electromyography (EMG) of the lower limb during quasi-static or dynamic squatting activities. However there is only little information on the comparison of these two squatting conditions. Only one study compared these activities in terms of 3D kinematics, but no information was available on 3D kinetics and EMG. The purpose of this study was to compare simultaneous recordings of 3D kinematics, 3D kinetics and EMG of the lower limb during quasi-static and fast dynamic squats. Methods: Ten subjects were recruited. 3D knee kinematics was recorded with a motion capture system, 3D kinetics was recorded with a force plate, and EMG of 8 muscles was recorded with surface electrodes. Each subject performed a quasi-static squat and several fast dynamic squats from 0° to 70° of knee flexion. Findings: Mean differences between quasi-static and dynamic squats were 1.6° for rotations, 1.8 mm for translations, 38 N ground reaction forces (2.1 % of subjects’ body weight), 6 Nm for torques, 13.0 mm for center of pressure, and 7 µV for EMG (6.3% of the maximum dynamic electromyographic activities ). Some significant differences (P < 0.05) were found in anterior-posterior translation, vertical forces and EMG. Interpretation: All differences found between quasi-static and fast dynamic squats can be considered small. 69.5% of the compared data were equivalent. In conclusion, this study show for the first time that quasi-static and dynamic squatting activities are comparable in terms of 3D kinematics, 3D kinetics and EMG.

Listed In: Biomechanical Engineering, Biomechanics, Gait, Orthopedic Research, Posturography

Impacts of Stifle Joint Remodeling on Vertical Ground Reaction Forces Following MCL Transection and Medial Meniscectomy

Functional demands placed on the human knee’s anterior cruciate ligament (ACL) vary with activity but remain impossible to measure directly in-vivo. Our lab is characterizing these demands in the sheep model by recording in vivo knee kinematics and ACL transducer voltages during activities of daily living (ADLs), reproducing these motions using the instrumented limb, and measuring the 3D forces in the ligament. However, up to 13% of patients sustaining ACL injuries will also sustain dual medial meniscus (MM) injuries and up to 10% will sustain dual medial collateral ligament (MCL) injuries. These structures are frequently left unrepaired, which may alter the ACL’s functional demands, resulting in inadequate ACL reconstruction outcomes for patients with dual injuries. Although these structures have been shown to alter ACL loading in cadaveric studies, the extent to which they impact ACL functionality during in vivo ADLs remains unknown. Moreover, changes in ACL functionality over time due to joint healing and remodeling have yet to be investigated. In this study, we aimed to track stifle joint remodeling in response to surgically imposed MCL transections and medial meniscectomies through monitoring vertical ground reaction forces (VGRFs) for three ADLs over 12 weeks. Results of this study may then be used in conjunction with future robotic studies as a tool to estimate in vivo load requirements for ACL reconstructions in patients with dual injuries.

Listed In: Biomechanical Engineering, Biomechanics, Gait, Orthopedic Research

Accelerometry for outdoor effort quantification

Assessing the lower limb properties in-situ is of a major interest for analyzing the athletic performance. From a physical point of view, the lower limb could be modeled as single linear spring which supports the whole body mass. The main mechanical parameter studied when using this spring-mass-model is the leg-spring stiffness (k). In laboratory conditions, the movements are assessed using a force plate (Meth1) which measures the ground reaction force (GRF), and a motion capture system which could estimate the displacement of the centre of mass (CoM). In this way, k is calculated as shown in equation (2).More recent methods allow to calculate k in field conditions by using either foot switches (Meth2) or accelerometry-based instruments (Meth3) which are both wireless devices. The associated calculated methods assume that force-time signal is a sine wave, described by the equation (3) with equation (4) (CT: contact time; FT: flight time). In these cases, the kinematic measurement (CoM) could be calculated either by a mathematical approach (Eq.(5)) (meth2), or by double integrating the acceleration (meth3) in order to calculate k.Thanks to their transportability, the methods 2 and 3 offer not only the possibility to assess the lower limb movements, but also, to objectively follow up the athletic abilities (performance, reactivity, force and power, stiffness) in-situ.

Listed In: Biomechanical Engineering, Biomechanics, Sports Science

Effects of cortical stimulation on sensorimotor hand functions in healthy elderly individuals

Transcranial anodal stimulation (tDCS) improves manual dexterity in healthy old adults. The underlying changes in finger force behavior for this improved dexterity have not been reported. Here, we investigated the effects of tDCS (20-min) over primary motor cortex (M1) combined with repeated practice on the Grooved pegboard test (tDCS+MP) on the fingertip forces applied to an object during grasp and manipulation. Eight right-handed able-bodied individuals (60-85 years) participated in a sham-controlled, single-blinded study. Each participant received anodal and sham intervention in two sessions at least 5-day apart. Before and after intervention, they performed a ‘key-slot’ task that required inserting a slot on an object onto a stationary bar, an isometric force production task using a pinch grip, and the Grooved pegboard test. Anodal relative to sham tDCS+MP allowed participants to better retain the improved performance on the pegboard test. For the isometric task, anodal tDCS+MP significantly increased the variability of force compared to sham tDCS+MP. More importantly, the improved retention of performance post-anodal tDCS correlated with the reduction in force angle variability on the key-slot task, but not with the change in force variability on the isometric task. Our findings suggest that anodal tDCS+MP facilitated retention of learning on a skillful manual task in healthy old adults, consistent with the role of M1 in retention of learning versus skill acquisition. Furthermore, improved force steadiness is one of the potential mechanisms through which short-term anodal tDCS during motor training yields improved performance on a functional task.
Listed In: Biomechanics, Neuroscience


Purpose: Total Hip Replacements (THR) are common procedures for older people who suffer from degenerative joint disease. Golf is a popular leisure sport played by older Americans including those with THR. Hip torques encountered in a golf swing after THR has not been reported. The purpose of this study is to describe 3D hip joint torques generated during a golf swinging by those with THR. Methods: Three male amateur golfers who were at least 1 year post THR (ages 59-71 year old and right hand dominant, (2 were left THR) participated. Golf handicap ranged from 16-18. All participants completed the Hip Harris Score. Passive reflective markers were placed on key boney anatomical landmarks. During data collection, participants completed ten swings using a standardized driver, after a warm up. Kinetics and kinematics were captured using a 10 camera Motion Analysis system and two AMTI forceplates. Inverse dynamics procedure was used to calculate peak hip torques in all three planes. Hip torques were normalized and presented as internal torques. Comparisons were made to previously collected similarly aged senior group. Results: Average Club head velocity was slower than senior group. Sagittal Plane: THR golfers exhibited the greatest torque similar to senior group. Frontal plane: THR golfers demonstrated a lower hip adductor torque on the lead leg compared to the trail leg and senior group. Transverse plane: THR exhibited higher hip external rotation torques compared to the internal rotation torques and the senior group. Conclusion: 3-D peak hip torques generated during the golf swing by persons with a THR are greatest in the sagittal plane. THR golfers demonstrated slower club head speed but generated higher hip torques in the transverse plane as compared to those without a THR. Hip external rotation torque was higher in all of the THR compared to the senior group. Clinical Significance: Subjects with a THR may be prone to abnormal forces in the transverse plane during the golf swing. Future studies are needed to determine impact on return to golf decisions following a THR.
Listed In: Biomechanics, Physical Therapy, Sports Science