Orthopedic Research | Force and Motion

Orthopedic Research

Ground Reaction Force Symmetry during Sitting and Standing Tasks after a Dual Mobility or Conventional Cup Total Hip Arthroplasty

Dual-mobility (DM) bearing implants reduce the incidence of dislocation following total hip arthroplasty (THA) also it increases hip stability and range of motion (ROM). However, it is unclear whether the improved ROM will lead to better mechanical symmetry. Ground reaction forces (GRF) analysis would help to understand joint compensatory effects and symmetry in THA patients. The purpose was to compare GRF symmetry between the operated and non-operated limbs in THA patients, of either DM or conventional-cup (CC) implant, during standing and sitting tasks. Twenty-four patients and 10 control participants (5M/5F; 62±10 years; 26±4 kg/m2) were recruited and underwent motion analysis before and nine months after THA. Patients were randomly assigned to either a DM (8M/4F; 63±5 years; 28±3 kg/m2) or CC (9M/3F; 62±5 years; 28±5 kg/m2) cementless replacement. Participants performed five sit-to-stand and stand-to-sit trials, with a bench adjusted to their knee heights and each foot on an individual force plate, with motion capture and GRF data been collected. Control group demonstrated standing (0.4±1.6%) and sitting (1.2±1.6%) symmetry. During sit-to-stand, DM group reduced its SI from pre- (5.5±1.6%) to post-op (1.2±1.9%, p=0.09), while the CC group showed a significant improvement (from 8.7±2.1% to 1.5±1.4%, p=0.02). For stand-to-sit, DM group reduced its SI (from 3.3±2.2% to 0.5±1.7%) while the CC group again had a significant improvement (from 8.2±2.1% to 1.2±1.1%, p=0.02). Larger improvements in symmetry were noticed for both groups during trunk flexion when standing; and for CC group during trunk extension when sitting. After surgery, patients with either implant reached SI inside the margin of 1.5 standard deviation from the CTRL (p>0.05). Statistical significance on paired condition was only observed on CC group due to its high pre-op score; however, both surgical groups showed an improved symmetry after THA.
Listed In: Biomechanics, Orthopedic Research


Human cadaveric bi-Segment impact experiments at different postures

Victims of improvised explosive devices (IEDs) that have presented spinal injury in recent conflicts have been shown to have a high incidence of lumbar spine fractures. Previous studies have shown that the initial positioning of spinal bone-disc-bone complexes affects their biomechanical response when loaded quasi-statically; such a correlation, however, has not been explored at appropriate high loading rate scenarios that simulate injury. This study aims to investigate the response of lumbar spine cadaveric segments in different postures under axial impact conditions. Three T11-L1 bi-segments were dissected and tested destructively in a drop tower under flexed/neutral/extended postures. Strains were measured on the vertebral body and the spinous process of T12. Forces were measured cranially using a 6-axis load cell, and a high-speed camera was used to capture displacements and fracture. The impacted specimens were CT-scanned to identify the fracture pattern. Whilst axial force to failure was similar for flexed and extended postures, the non-axial forces and the bending moments, however, were dissimilar between postures. Although all specimens showed a burst fracture pattern, the extended posture failed more posteriorly. This suggests that axial force alone is not adequate to predict injury severity in the lumbar spine. This insight would not have been possible without the use of the 6-axis load cell. As metrics for spinal injury in surrogates take into account only the axial force, this programme of work may provide data for a better injury criterion and allow for a mechanistic understanding of the effects of posture on injury risk.
Listed In: Biomechanical Engineering, Biomechanics, Mechanical Engineering, Orthopedic Research


Quantifying varus and valgus thrust in individuals with severe knee osteoarthritis

Background: Gait abnormalities can influence surgical outcomes in people with severe knee osteoarthritis (OA) and thus a thorough understanding of gait abnormalities in these people prior to arthroplasty is important. Varus-valgus thrust is a characteristic linked to OA disease progression that has not yet been investigated in a cohort with severe knee OA awaiting knee arthroplasty. The aims of this study were to determine i) prevalence of varus and valgus thrust in a cohort with severe knee OA compared to an asymptomatic group, ii) whether the thrust magnitude differed between these groups iii) differences between varus and valgus thrusters within the OA cohort and iv) whether certain measures could predict thrust in the OA cohort. Methods: 40 patients with severe knee OA scheduled for primary TKR and 40 asymptomatic participants were recruited. Three-dimensional gait analysis was performed on all participants, with the primary biomechanical measures of interest being: varus and valgus thrust, knee adduction angle, peak KAM, and KAM impulse. Additionally, static knee alignment and quadriceps strength were assessed in the subgroup with knee OA. Findings: No difference was found in the prevalence of varus and valgus thrust between the severe OA and control groups (Pearson chi-square = 3.735, p value = 0.151). The OA varus thrust group had a significantly higher peak KAM (p=0.000), KAM impulse (p=0.001), static alignment (p=0.021), and lower quadriceps strength (p=0.041) than the valgus thrust group. Peak KAM and quadriceps strength were found to explain 34.9% of the variation in maximum thrust, such that an increase in KAM and a decrease in quadriceps strength were associated with an increase in maximum (varus) thrust. Interpretation: Few differences between the severe OA and control groups were seen, however dichotomizing the groups into varus and valgus cohorts revealed a number of biomechanical differences. Patients with severe OA are often treated as a homogenous cohort; however, by classifying which individuals have a varus or valgus thrust, we have identified a subset of patients with poorer biomechanics who could potentially be at a higher risk of a worse outcome after surgery.
Listed In: Biomechanics, Gait, Orthopedic Research


Smart PEEK modified by self-initiated surface graft polymerization for orthopedic bearings

We investigated the production of free radicals on a poly(ether-ether-ketone) (PEEK) substrate under ultraviolet (UV) irradiation. The amount of the ketyl radicals produced from the benzophenone (BP) units in the PEEK molecular structure initially increased rapidly and then became almost constant. Our observations revealed that the BP units in PEEK acted as photoinitiators, and that it was possible to use them to control the graft polymerization of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC). This “self-initiated surface graft polymerization” method is very convenient in the absence of external photoinitiator. We also investigated the effects of the monomer concentration and UV irradiation time on the extent of the grafted PMPC layer. Furthermore, as an application to improving the durability of artificial hips, we demonstrated the nanometer-scale photoinduced grafting of PMPC onto PEEK and carbon fiber-reinforced PEEK (CFR-PEEK) orthopedic bearing surfaces and interfaces. A variety of test revealed significant improvements in the water wettability, frictional properties, and wear resistance of the surfaces and interfaces.
Listed In: Biotribology, Orthopedic Research


Novel Synthetic Biolubricant Reduces Friction in Previously-Worn Cartilage Evaluated by Long-Duration Torsional Friction Test

During osteoarthritis (OA), the lubricity of synovial fluid (SF) decreases. Therefore, we synthesized a novel, 2MDa polymer biolubricant (“2M TEG”) designed to augment the lubricating properties of SF in OA. This study’s aims were 1) to compare the abilities of 2M TEG and bovine synovial fluid (BSF) to reduce the coefficient of friction (COF) for previously “worn” cartilage specimens during a long-duration, torsional, wear test, and 2) using the same regimen, examine the “reversibility” of 2M TEG’s lubricity relative to BSF. For both aims, each wear test consisted of subjecting mated, bovine osteochondral plug pairs to 10,080 rotations. To accomplish Aim 1, plug pairs were subjected to three sequential wear regimens (Wear 1-3). Wear 1&2 were used to progressively “wear” the cartilage, and Wear 3 was used to test the efficacy of either BSF (n=4) or 2M TEG (n=4) on “worn” cartilage. For Aim 2, three pairs were subjected to four sequential wear regimens, where the lubricants were BSF, BSF, 2M TEG, and BSF, respectively. The relative percent reduction in COF between Wear 3 and Wear 2 in Aim 1 was greatest for 2M TEG, followed by BSF. For Aim 2, the mean percent reduction in COF for Wear 3 relative to Wear 2 was almost exactly the same as the mean increase in COF for Wear 4 relative to Wear 3. By reducing the COF for worn cartilage in OA joints, synthetic biolubricants such as 2M TEG could help minimize further cartilage wear and ameliorate the progression of OA.
Listed In: Biomechanical Engineering, Biomechanics, Biotribology, Orthopedic Research


Evaluation of Haversian Bone Fracture Healing in Simulated Microgravity

The inherent reduction in mechanical loading associated with microgravity has been shown to result in dramatic decreases in the bone mineral density (BMD) and mechanical strength of skeletal tissue. Importantly, there is a concomitant increase in fracture risk during long-duration spaceflight missions. Thus, the objective of this study was to investigate the effects of microgravity loading on long-bone fracture healing in a previously-developed Haversian bone model of simulated microgravity over a 4-week period. For in vivo mechanical evaluation, strains of an implanted orthopaedic fixation plate were quantified for known hindlimb ground reaction forces with a six degree-of-freedom load cell (AMTI, Watertown, MA). In vivo strain measurements demonstrated significantly higher orthopaedic plate strains in the Microgravity Group as compared to the Control Group following the 28-day healing period due to inhibited healing in the microgravity environment. DEXA BMD in the treated metatarsus of the Microgravity Group decreased 17.6% at the time of the ostectomy surgery and decreased an additional 5.4% during the 28-day healing period. Four-point bending stiffness of the Microgravity Group was 4.4 times lower than that of the Control Group (p<0.01), while µCT and histomorphometry demonstrated reduced periosteal callus area, mineralizing surface, mineral apposition rate (p<0.001), bone formation rate, and periosteal/endosteal osteoblast numbers as well as increased periosteal osteoclast number. These data provide strong evidence that the mechanical loading environment dramatically affects the fracture healing cascade and resultant mineralized tissue strength, and that the microgravity loading environment has negative effects on fracture healing in Haversian systems.
Listed In: Biomechanical Engineering, Biomechanics, Mechanical Engineering, Orthopedic Research


Biochemical markers of type II collagen degradation and synthesis are not associated with biomechanical variables in patients following ACL reconstruction.

This study investigated the association of serum C-propeptide (sCPII), urinary CTX-II (uCTX-II), and uCTX-II:sCPII with peak vertical ground reaction force (PVGRF) and quadriceps strength during jump-landing in patients with ACL reconstruction (ACLR). METHODS: twenty two patients with ACLR (Male=14, age=19.6 ± 4 yr) were tested 20 weeks after the surgery. Blood and urine samples were collected. sCPII and uCTX-II, biomarkers of articular degradation and synthesis respectively, were analyze using commercial ELISAs. Subjects performed 3 trials of a forward drop land and a drop vertical jump. Subjects started on a 20 cm step and landed on a force platform (AMTI). PVGRF was analyzed on the surgical side. Quadriceps strength (PKET) was assessed with an isokinetic dynamometer (60°/s). PVGRF and PKET were normalized to body weight (BW). Pearson’s correlation, with and without adjustment for age, was used to analyze associations among variables. RESULTS: Mean (± SD) log concentrations were 2.88 ± 0.19 and 3.32 ± 0.49 ng/mmol for sCPII and uCTX-II respectively; and for uCTXII:CPII was 1.16 ± 0.18. PVGRF was 3.2 BW ± 0.3 and 1.4 BW ± 0.3 for the forward drop land and drop vertical jump tasks, respectively; PKET was 0.92 BW ± 0.2. There were no significant correlations among variables (p≥0.2), except for a trend towards a positive correlation between PKET and uCTXII:sCPII (r = 406, p = .076). CONCLUSSIONS: Biomarkers of type II collagen metabolism were not associated with jump-landing forces. However, higher quadriceps strength may be associated with a shift in articular cartilage metabolism towards degradation.


Listed In: Biomechanics, Orthopedic Research, Physical Therapy, Sports Science


Are static and dynamic squatting activities comparable?

Background: Numerous studies have described 3D kinematics, 3D kinetics and electromyography (EMG) of the lower limb during quasi-static or dynamic squatting activities. However there is only little information on the comparison of these two squatting conditions. Only one study compared these activities in terms of 3D kinematics, but no information was available on 3D kinetics and EMG. The purpose of this study was to compare simultaneous recordings of 3D kinematics, 3D kinetics and EMG of the lower limb during quasi-static and fast dynamic squats. Methods: Ten subjects were recruited. 3D knee kinematics was recorded with a motion capture system, 3D kinetics was recorded with a force plate, and EMG of 8 muscles was recorded with surface electrodes. Each subject performed a quasi-static squat and several fast dynamic squats from 0° to 70° of knee flexion. Findings: Mean differences between quasi-static and dynamic squats were 1.6° for rotations, 1.8 mm for translations, 38 N ground reaction forces (2.1 % of subjects’ body weight), 6 Nm for torques, 13.0 mm for center of pressure, and 7 µV for EMG (6.3% of the maximum dynamic electromyographic activities ). Some significant differences (P < 0.05) were found in anterior-posterior translation, vertical forces and EMG. Interpretation: All differences found between quasi-static and fast dynamic squats can be considered small. 69.5% of the compared data were equivalent. In conclusion, this study show for the first time that quasi-static and dynamic squatting activities are comparable in terms of 3D kinematics, 3D kinetics and EMG.


Listed In: Biomechanical Engineering, Biomechanics, Gait, Orthopedic Research, Posturography


Impacts of Stifle Joint Remodeling on Vertical Ground Reaction Forces Following MCL Transection and Medial Meniscectomy

Functional demands placed on the human knee’s anterior cruciate ligament (ACL) vary with activity but remain impossible to measure directly in-vivo. Our lab is characterizing these demands in the sheep model by recording in vivo knee kinematics and ACL transducer voltages during activities of daily living (ADLs), reproducing these motions using the instrumented limb, and measuring the 3D forces in the ligament. However, up to 13% of patients sustaining ACL injuries will also sustain dual medial meniscus (MM) injuries and up to 10% will sustain dual medial collateral ligament (MCL) injuries. These structures are frequently left unrepaired, which may alter the ACL’s functional demands, resulting in inadequate ACL reconstruction outcomes for patients with dual injuries. Although these structures have been shown to alter ACL loading in cadaveric studies, the extent to which they impact ACL functionality during in vivo ADLs remains unknown. Moreover, changes in ACL functionality over time due to joint healing and remodeling have yet to be investigated. In this study, we aimed to track stifle joint remodeling in response to surgically imposed MCL transections and medial meniscectomies through monitoring vertical ground reaction forces (VGRFs) for three ADLs over 12 weeks. Results of this study may then be used in conjunction with future robotic studies as a tool to estimate in vivo load requirements for ACL reconstructions in patients with dual injuries.


Listed In: Biomechanical Engineering, Biomechanics, Gait, Orthopedic Research