Orthopedic Research

Smart PEEK modified by self-initiated surface graft polymerization for orthopedic bearings

We investigated the production of free radicals on a poly(ether-ether-ketone) (PEEK) substrate under ultraviolet (UV) irradiation. The amount of the ketyl radicals produced from the benzophenone (BP) units in the PEEK molecular structure initially increased rapidly and then became almost constant. Our observations revealed that the BP units in PEEK acted as photoinitiators, and that it was possible to use them to control the graft polymerization of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC). This “self-initiated surface graft polymerization” method is very convenient in the absence of external photoinitiator. We also investigated the effects of the monomer concentration and UV irradiation time on the extent of the grafted PMPC layer. Furthermore, as an application to improving the durability of artificial hips, we demonstrated the nanometer-scale photoinduced grafting of PMPC onto PEEK and carbon fiber-reinforced PEEK (CFR-PEEK) orthopedic bearing surfaces and interfaces. A variety of test revealed significant improvements in the water wettability, frictional properties, and wear resistance of the surfaces and interfaces.
Listed In: Biotribology, Orthopedic Research

Novel Synthetic Biolubricant Reduces Friction in Previously-Worn Cartilage Evaluated by Long-Duration Torsional Friction Test

During osteoarthritis (OA), the lubricity of synovial fluid (SF) decreases. Therefore, we synthesized a novel, 2MDa polymer biolubricant (“2M TEG”) designed to augment the lubricating properties of SF in OA. This study’s aims were 1) to compare the abilities of 2M TEG and bovine synovial fluid (BSF) to reduce the coefficient of friction (COF) for previously “worn” cartilage specimens during a long-duration, torsional, wear test, and 2) using the same regimen, examine the “reversibility” of 2M TEG’s lubricity relative to BSF. For both aims, each wear test consisted of subjecting mated, bovine osteochondral plug pairs to 10,080 rotations. To accomplish Aim 1, plug pairs were subjected to three sequential wear regimens (Wear 1-3). Wear 1&2 were used to progressively “wear” the cartilage, and Wear 3 was used to test the efficacy of either BSF (n=4) or 2M TEG (n=4) on “worn” cartilage. For Aim 2, three pairs were subjected to four sequential wear regimens, where the lubricants were BSF, BSF, 2M TEG, and BSF, respectively. The relative percent reduction in COF between Wear 3 and Wear 2 in Aim 1 was greatest for 2M TEG, followed by BSF. For Aim 2, the mean percent reduction in COF for Wear 3 relative to Wear 2 was almost exactly the same as the mean increase in COF for Wear 4 relative to Wear 3. By reducing the COF for worn cartilage in OA joints, synthetic biolubricants such as 2M TEG could help minimize further cartilage wear and ameliorate the progression of OA.
Listed In: Biomechanical Engineering, Biomechanics, Biotribology, Orthopedic Research

Evaluation of Haversian Bone Fracture Healing in Simulated Microgravity

The inherent reduction in mechanical loading associated with microgravity has been shown to result in dramatic decreases in the bone mineral density (BMD) and mechanical strength of skeletal tissue. Importantly, there is a concomitant increase in fracture risk during long-duration spaceflight missions. Thus, the objective of this study was to investigate the effects of microgravity loading on long-bone fracture healing in a previously-developed Haversian bone model of simulated microgravity over a 4-week period. For in vivo mechanical evaluation, strains of an implanted orthopaedic fixation plate were quantified for known hindlimb ground reaction forces with a six degree-of-freedom load cell (AMTI, Watertown, MA). In vivo strain measurements demonstrated significantly higher orthopaedic plate strains in the Microgravity Group as compared to the Control Group following the 28-day healing period due to inhibited healing in the microgravity environment. DEXA BMD in the treated metatarsus of the Microgravity Group decreased 17.6% at the time of the ostectomy surgery and decreased an additional 5.4% during the 28-day healing period. Four-point bending stiffness of the Microgravity Group was 4.4 times lower than that of the Control Group (p<0.01), while µCT and histomorphometry demonstrated reduced periosteal callus area, mineralizing surface, mineral apposition rate (p<0.001), bone formation rate, and periosteal/endosteal osteoblast numbers as well as increased periosteal osteoclast number. These data provide strong evidence that the mechanical loading environment dramatically affects the fracture healing cascade and resultant mineralized tissue strength, and that the microgravity loading environment has negative effects on fracture healing in Haversian systems.
Listed In: Biomechanical Engineering, Biomechanics, Mechanical Engineering, Orthopedic Research

Biochemical markers of type II collagen degradation and synthesis are not associated with biomechanical variables in patients following ACL reconstruction.

This study investigated the association of serum C-propeptide (sCPII), urinary CTX-II (uCTX-II), and uCTX-II:sCPII with peak vertical ground reaction force (PVGRF) and quadriceps strength during jump-landing in patients with ACL reconstruction (ACLR). METHODS: twenty two patients with ACLR (Male=14, age=19.6 ± 4 yr) were tested 20 weeks after the surgery. Blood and urine samples were collected. sCPII and uCTX-II, biomarkers of articular degradation and synthesis respectively, were analyze using commercial ELISAs. Subjects performed 3 trials of a forward drop land and a drop vertical jump. Subjects started on a 20 cm step and landed on a force platform (AMTI). PVGRF was analyzed on the surgical side. Quadriceps strength (PKET) was assessed with an isokinetic dynamometer (60°/s). PVGRF and PKET were normalized to body weight (BW). Pearson’s correlation, with and without adjustment for age, was used to analyze associations among variables. RESULTS: Mean (± SD) log concentrations were 2.88 ± 0.19 and 3.32 ± 0.49 ng/mmol for sCPII and uCTX-II respectively; and for uCTXII:CPII was 1.16 ± 0.18. PVGRF was 3.2 BW ± 0.3 and 1.4 BW ± 0.3 for the forward drop land and drop vertical jump tasks, respectively; PKET was 0.92 BW ± 0.2. There were no significant correlations among variables (p≥0.2), except for a trend towards a positive correlation between PKET and uCTXII:sCPII (r = 406, p = .076). CONCLUSSIONS: Biomarkers of type II collagen metabolism were not associated with jump-landing forces. However, higher quadriceps strength may be associated with a shift in articular cartilage metabolism towards degradation.

Listed In: Biomechanics, Orthopedic Research, Physical Therapy, Sports Science

Are static and dynamic squatting activities comparable?

Background: Numerous studies have described 3D kinematics, 3D kinetics and electromyography (EMG) of the lower limb during quasi-static or dynamic squatting activities. However there is only little information on the comparison of these two squatting conditions. Only one study compared these activities in terms of 3D kinematics, but no information was available on 3D kinetics and EMG. The purpose of this study was to compare simultaneous recordings of 3D kinematics, 3D kinetics and EMG of the lower limb during quasi-static and fast dynamic squats. Methods: Ten subjects were recruited. 3D knee kinematics was recorded with a motion capture system, 3D kinetics was recorded with a force plate, and EMG of 8 muscles was recorded with surface electrodes. Each subject performed a quasi-static squat and several fast dynamic squats from 0° to 70° of knee flexion. Findings: Mean differences between quasi-static and dynamic squats were 1.6° for rotations, 1.8 mm for translations, 38 N ground reaction forces (2.1 % of subjects’ body weight), 6 Nm for torques, 13.0 mm for center of pressure, and 7 µV for EMG (6.3% of the maximum dynamic electromyographic activities ). Some significant differences (P < 0.05) were found in anterior-posterior translation, vertical forces and EMG. Interpretation: All differences found between quasi-static and fast dynamic squats can be considered small. 69.5% of the compared data were equivalent. In conclusion, this study show for the first time that quasi-static and dynamic squatting activities are comparable in terms of 3D kinematics, 3D kinetics and EMG.

Listed In: Biomechanical Engineering, Biomechanics, Gait, Orthopedic Research, Posturography

Impacts of Stifle Joint Remodeling on Vertical Ground Reaction Forces Following MCL Transection and Medial Meniscectomy

Functional demands placed on the human knee’s anterior cruciate ligament (ACL) vary with activity but remain impossible to measure directly in-vivo. Our lab is characterizing these demands in the sheep model by recording in vivo knee kinematics and ACL transducer voltages during activities of daily living (ADLs), reproducing these motions using the instrumented limb, and measuring the 3D forces in the ligament. However, up to 13% of patients sustaining ACL injuries will also sustain dual medial meniscus (MM) injuries and up to 10% will sustain dual medial collateral ligament (MCL) injuries. These structures are frequently left unrepaired, which may alter the ACL’s functional demands, resulting in inadequate ACL reconstruction outcomes for patients with dual injuries. Although these structures have been shown to alter ACL loading in cadaveric studies, the extent to which they impact ACL functionality during in vivo ADLs remains unknown. Moreover, changes in ACL functionality over time due to joint healing and remodeling have yet to be investigated. In this study, we aimed to track stifle joint remodeling in response to surgically imposed MCL transections and medial meniscectomies through monitoring vertical ground reaction forces (VGRFs) for three ADLs over 12 weeks. Results of this study may then be used in conjunction with future robotic studies as a tool to estimate in vivo load requirements for ACL reconstructions in patients with dual injuries.

Listed In: Biomechanical Engineering, Biomechanics, Gait, Orthopedic Research