stability

Quantifying stair gait stability and plantar pressure in an aging community, with modifications to insoles and lighting

Introduction: Stair gait is an activity performed daily. Inherently falls during stair gait continue to be a concern especially for older adults 65 years +. Recently falls have become the most common cause of injury-related deaths in individuals over the age of 75 y.o. Stair descent falls account for 75% of stair falls and also present a greater injury severity. Poor shoes or insoles and lighting condition can contribute to an increased risk of falls during stair locomotion. Stability can be measured using the COM-BOS ‘stability margin’ relationship. Center of pressure (COP), another stability measure,can be calculated from a multi-axis force-plate system. As well, plantar pressure is an important indicator of gait pattern efficiency. Aim: To identify aspects of stair gait that increase the risk of falls. By measuring the COM-BOS ‘stability margin’, the COP and plantar pressure patterns of individuals during stair gait, while modifying insoles and lighting. Methods: Young and older adults will ascend and descend a 4 level staircase, with two imbedded AMTI-force platforms in varying lighting condition (low, normal). Participants will be fitted with standardized footwear with Medi-logic insoles placed under varying hardnesses of insoles. An Optotrak motion capture system will record 12 IRED markers placed on the individual to determine the COM trajectory and BOS of location. Hypothesis: Partipants should demonstrate a greater lateral displacement in the single support phase during dim lighting as opposed to normal lighting. The stability of older adults will be compromised with alteration to the insoles (soft and hard).


Listed In: Biomechanics, Gait, Other


Metrics of multi-muscle synergies in Parkinson’s disease: Analysis of variance and motor equivalence

Over the past years, we have developed a test for postural stability based on the theory of synergies stabilizing salient performance variables. In this study, effects of Parkinson's disease (PD) and dopamine-replacement therapy on multi-muscle synergies stabilizing the center of pressure (COP) coordinate were explored between: (1) a cohort of 11 patients without clinically identifiable postural problems (Hoehn-Yahr stage II) and 11 age-matched controls, and (2) a cohort of 10 patients tested off- and on-medication, with and without postural problems (stage II and III, n = 5 per stage). Participants stood on a force platform and performed cyclical body sway at 0.5 Hz along the anterior-posterior direction. Electromyographic signals from 13 leg and trunk muscles were used to compute: (1) the amount of inter-cycle variance that did not affect (VUCM) and affected (VORT) COP coordinate, and (2) the magnitude of the cycle-to-cycle motion that did not change (motor equivalent: ME) and changed (non-motor equivalent: nME) the COP coordinate. We hypothesized that both methods would produce indices sensitive to PD and dopaminergic medications. Compared to controls, patients showed significantly smaller inter-cycle VUCM and ME components suggesting a less flexible, and hence less stable, behavior. Moreover, inter-cycle variance within/orthogonal to the UCM correlated with ME/nME displacements. Results suggest clinical utility of variance and motor equivalence analyses of postural instability in early stages of PD and quantifying the effects of dopamine-replacement drugs. The analysis of motor equivalence is particularly attractive because it requires only a handful of trials (observations).
Listed In: Neuroscience


Characterising gait over different walking speeds in patients with bilateral vestibular loss: preliminary results

Bilateral vestibular hypofunction (BVH) is a bilateral reduction or loss of vestibular function resulting in balance deficits and an increased falls risk. As part of a larger study, this experiment aimed to assess how spatiotemporal gait characteristics and their variability change across different walking speeds in patients with BVH. Nine patients (55±15y) with BVH have participated thus far. Experiments were conducted on the CAREN Extended system (Motekforce Link, Amsterdam, The Netherlands). Following multiple familiarisation trials, the participants completed five recorded two minute walking bouts at different speeds (0.6m/s, 0.8m/s, 1.0m/s, 1.2m/s and 1.4m/s). 60 strides per speed were analysed and the means, standard deviations and coefficients of variation (CV) of stride length and time, step length and width, double support time and swing phase toe clearance were calculated. Stride length, step length and toe clearance all increased with increases in walking speed (P<0.001). Stride and double support time decreased with increased walking speed (P<0.0001). No walking speed effect was found for step width (P=0.25). Significant reductions in variability with increases in walking speed were found for stride length, stride time, step length, toe clearance (P<0.01) and double support time (P<0.05). A significant increase in step width variability was observed with increases in walking speed (P=0.0033). These preliminary data suggest that while anteroposterior gait characteristics may improve in terms or variability with increases in walking speed in these patients, mediolateral motions may become more variable, which may have implications for mediolateral stability and falls risk in patients with BVH.
Listed In: Biomechanics, Gait, Neuroscience